FAIRCHILD

SEMICONDUCTOR TM

NC7SU04 TinyLogic® HS Unbuffered Inverter

General Description

The NC7SU04 is a single special purpose CMOS Inverter. The inverter circuit is designed with a single unbuffered stage to facilitate use in crystal oscillator applications. It is not intended for use in logic inversion applications.

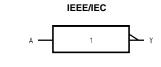
Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation over a broad V_{CC} range. ESD protection diodes inherently guard both input and output with respect to the V_{CC} and GND rails.

Features

■ Space saving SOT23 or SC70 5-lead package

October 1995

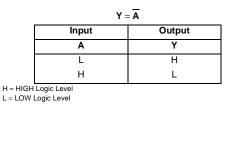
Revised August 2004

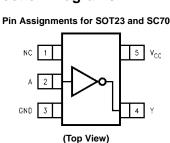

- Ultra small MicroPak[™] leadless package
- Unbuffered for crystal oscillator applications
- E Low Quiescent Power; $I_{CC} < 1 \ \mu A$
- Balanced Output Drive; 2 mA I_{OL}, -2 mA I_{OH}
- Broad V_{CC} Operating Range; 2V–6V
- Balanced Propagation Delays
- Specified for 3V operation

Ordering Code:

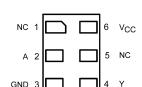
Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SU04M5X	MA05B	7SU4	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7SU04P5X	MAA05A	SU4	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
NC7SU04L6X	MAC06A	E5	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Logic Symbol


Connection Diagrams



Pin Descriptions


Pin Names	Description
A	Input
Y	Output
NC	No Connect

Function Table

Pad Assignments for MicroPak

(Top Thru View)

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ are trademarks of Fairchild Semiconductor Corporation.

© 2004 Fairchild Semiconductor Corporation DS012142

Absolute Maximum Ratings(Note 1)

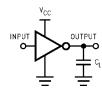
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$ V_{IN} \leq -0.5V $	–20 mA
@ $V_{IN} \ge V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _{IN})	–0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
@ V _{OUT} < -0.5V	–20 mA
@ $V_{OUT} > V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _{OUT})	–0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _{OUT})	±12.5 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±25 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	150°C
Lead Temperature (T _L);	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 6.0V
Input Voltage (V _{IN})	0V to V_{CC}
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Thermal Resistance (θ_{JA})	
SOT23-5	300°C/W
SC70-5	425°C/W

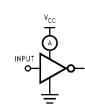
Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions
′ін	HIGH Level Input Voltage	2.0	1.70			1.70			
		3.0	2.45			2.45		v	
		4.5	3.60			3.60		v	
		6.0	4.80			4.80			
/ _{IL}	LOW Level Input Voltage	2.0			0.30		0.30		
		3.0			0.50		0.50	v	
		4.5			0.90		0.90	v	
		6.0			1.20		1.20		
V _{OH}	HIGH Level Output Voltage	2.0	1.80	2.0		1.80			
		3.0	2.5	3.0		2.50		v	$I_{OH} = -20 \ \mu A$
		4.5	4.00	4.5		4.00			$V_{IN} = V_{IL}$
		6.0	5.50	5.9		5.50			
									$V_{IN} = GND$
		3.0	2.68	2.82		2.63		v	$I_{OH} = -1.3 \text{ mA}$
		4.5	4.18	4.33		4.13		v	$I_{OH} = -2 \text{ mA}$
		6.0	5.68	5.76		5.63			$I_{OH} = -2.6 \text{ mA}$
V _{OL}	LOW Level Output Voltage	2.0		0.00	0.20		0.20		
		3.0		0.00	0.50		0.50	v	$I_{OL} = 20 \ \mu A$
		4.5		0.01	0.50		0.50	v	$V_{IN} = V_{IH}$
		6.0		0.04	0.50		0.50		
									$V_{IN} = V_{CC}$
		3.0		0.11	0.26		0.33	v	I _{OL} = 1.3 mA
		4.5		0.12	0.26		0.33	v	$I_{OL} = 2 \text{ mA}$
		6.0		0.15	0.26		0.33		I _{OL} = 2.6 mA
IN	Input Leakage Current	6.0			±0.1	1	±1.0	μΑ	$V_{IN} = V_{CC}, GND$
lcc	Quiescent Supply Current	6.0			1.0		10.0	μΑ	$V_{IN} = V_{CC}, GND$

Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conultions	Number
t _{PLH} ,	Propagation Delay	5.0		3	15			ns	$C_L = 15 \text{ pF}$	_L = 15 pF
t _{PHL}		2.0		17	100		125			_
		3.0		9	27		35			Figures 1, 3
		4.5		7	20		25	ns		
		6.0		6.5	17		21			
t _{TLH} ,	Output Transition Time	5.0		4	10			ns	$C_L = 15 \text{ pF}$	
t _{THL}		2.0		25	125		155			T
		3.0		16	35		45	-	$C_{I} = 50 pF$	Figures 1, 3
		4.5		12	25		31	ns	$G_L = 50 \text{ pm}$	
		6.0		10	21		26			
CIN	Input Capacitance	Open		2	10		10	pF		
C _{PD}	Power Dissipation Capacitance	5.0		4		1		pF	(Note 3)	Figure 2

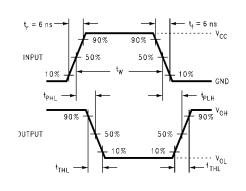
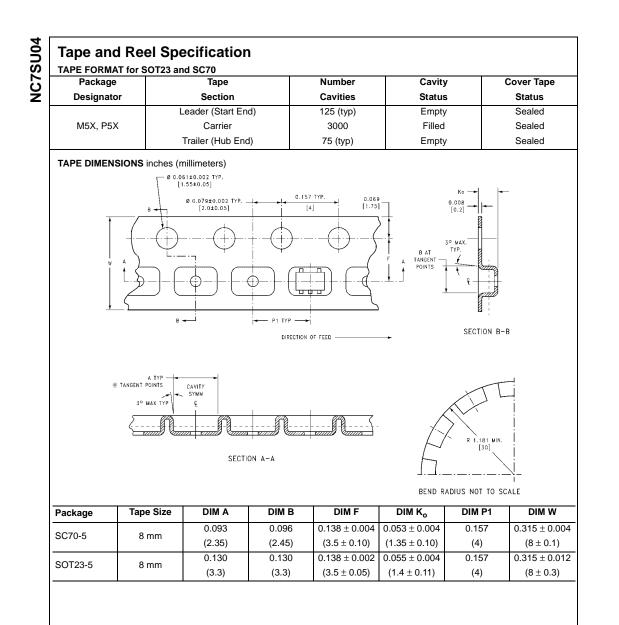
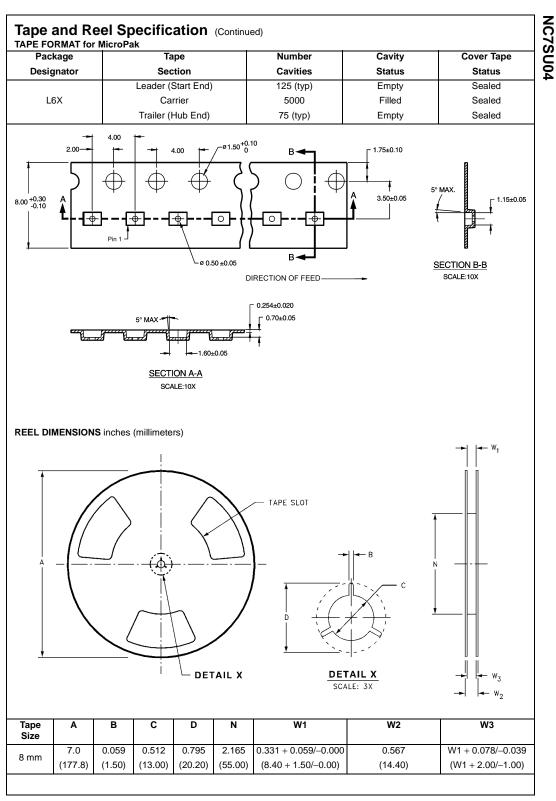

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{N}) + (I_{CC}\text{static}).$

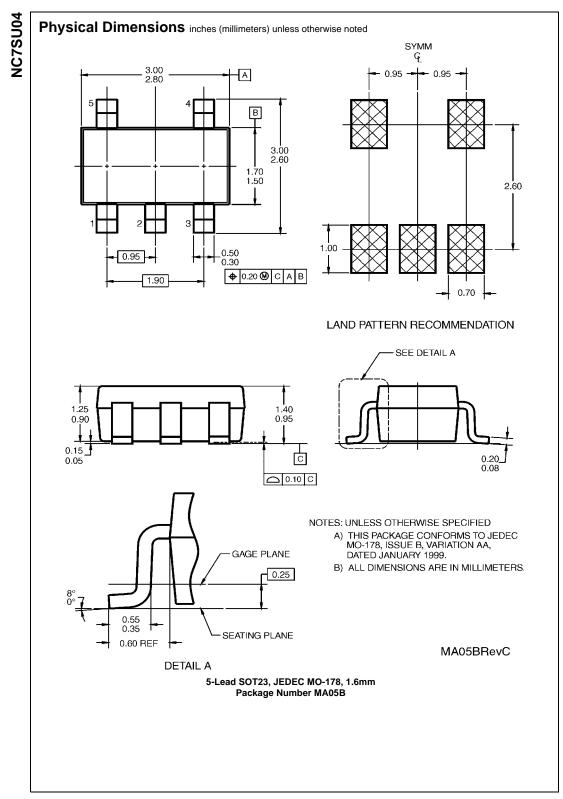
AC Loading and Waveforms

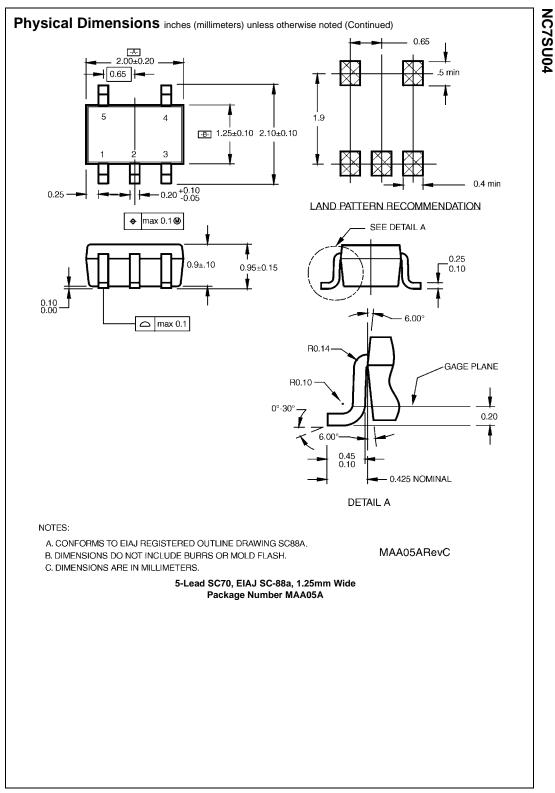
 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_W = 500 ns

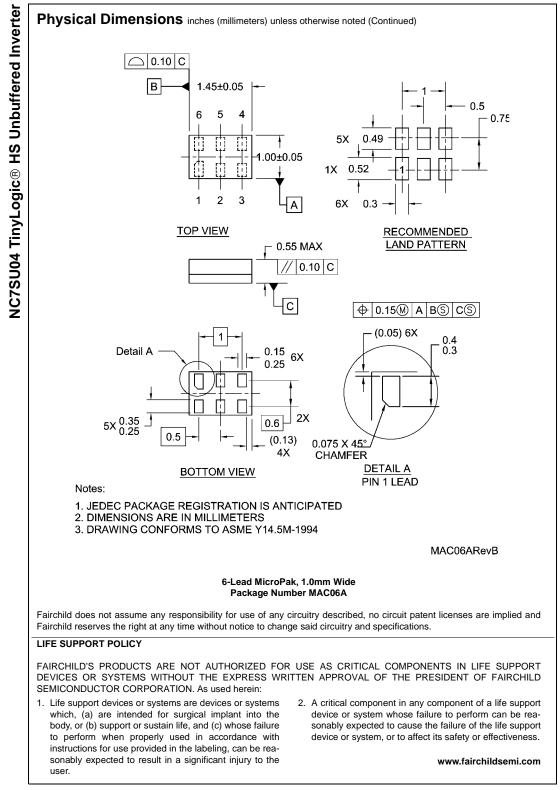
FIGURE 1. AC Test Circuit

Input = AC Waveform; PRR = variable; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit


FIGURE 3. AC Waveforms





www.fairchildsemi.com

5

